

Title: Aeronautics of the Space Shuttle Author: Sandy Mills-Alford

Submitted: May 15, 2008 School/Org: AliveTek, Inc.

# Lesson Overview:

While reading about the aeronautics of the Space Shuttle, students will begin to understand the aeronautical features that allow the Space Shuttle to be a lifting body that launches like a rocket, orbits like a spacecraft, and lands like a glider.

| Suggested Classroom Time: 60-120 minutes | Grade Levels: 7-9                  |
|------------------------------------------|------------------------------------|
| KLASS Module: 2-Orientation              | Topic/Console: Shuttle Information |

## Materials Needed:

| Activity | Documents                                                                                                                 | Other Materials                                                                                                  |
|----------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1        | Background information:<br>http://www.nasa.gov/audience/forstudents/9-<br>12/features/F_Aeronautics_of_Space_Shuttle.html | Demonstration computer with<br>Internet connection or Shuttle<br>diagrams or orbiter model                       |
| 2        | RDG_Aeronautics-Space-Shuttle.doc                                                                                         |                                                                                                                  |
| 3        | AS_Aeronautics-Space-Shuttle.doc<br>KEY_Aeronautics-Space-Shuttle.doc<br>MMAS_Aeronautics-Space-Shuttle.htm               | Demonstration or student computers<br>for reviewing the multimedia<br>assessment or writing tools for<br>handout |

# National Standards/Objectives:

| Discipline | Standard                          | Objective                                                                             |
|------------|-----------------------------------|---------------------------------------------------------------------------------------|
| Science    | E. Science and Technology         | Students discover the abilities of technological design.                              |
| Science    | G. History and Nature of Science  | Students explore science as a human endeavor.                                         |
| Technology | Social, ethical, and human issues | Students understand the ethical, cultural, and societal issues related to technology. |
| Math       | Measurement                       | Students apply appropriate techniques, tools, and formulas to determine measurements. |





### **Desired Results:**

Students will be able to answer these essential questions

- How does the Space Shuttle fly in space and in the Earth's atmosphere?
- What are the aeronautical features of the orbiter?

#### Students will know

- There are many differences between an airplane and the Space Shuttle orbiter.
- The Space Shuttle can fly up to hypersonic speeds.

### Students will be able to

• Describe the orbiter as a unique aerospace vehicle, one with a lifting body that launches like a rocket, orbits like a spacecraft and lands like a glider.

### Learning Plan/Activities:

### 1. Introducing the Lesson.

Show a diagram of the orbiter or pass around a model of the orbiter.

Script: "Many of us might take for granted what a truly amazing machine the Space Shuttle orbiter is. But think of it! It's a huge vehicle with the firepower of a rocket and the grace of a bird. So, let's discover what accounts for its unparalleled brilliance."

### 2. Presenting and Exploring Information.

Pass out the *Aeronautics of the Space Shuttle* document (RDG\_Aeronautics-Space-Shuttle.doc). Explain to the class whether you want them to read quietly, read along with you, or take turns reading aloud.

### 3. Evaluating the Lesson.

Have students work through the *Aeronautics of the Space Shuttle* assessment (AS\_Aeronautics-Space-Shuttle.doc). When they are finished, review their answers with them, and help them work through any questions they may have. Note that this activity has a multimedia component (MMAS\_Aeronautics-Space-Shuttle.htm). You may have them do this with you as a fun review activity in lieu of the printed assessment.

### **Assessment Evidence:**

Performance Tasks

- 1. Collect and evaluate the student work on the *Aeronautics of the Space Shuttle* assessment (AS\_Aeronautics-Space-Shuttle.doc).
- 2. Give feedback regarding how they worked during the class session, and discuss strategies used for finding the answers.

### Other Evidence

1. Perform normal classroom observation and assessment of progress and participation.



### **Extensions and Going Further Resources:**

Using the data found in the reading, implement one or more of the following activities based on the subject and grade level.

http://www.nasa.gov/audience/forstudents/9-12/features/F\_Aeronautics\_of\_Space\_Shuttle.html

- Have the students create a collaborative sequence drawing of the Space Shuttle launching, orbiting or landing. Assign each student a segment of flight to research and have him or her diagram using the provided measurements. Hang the sequenced drawings across the front of the classroom.
- Have the students each write 3 computation problem sets to exchange with their peers. Of course, before they can "quiz" others with their problems, they will have to create the answer key.
- Have the students analyze trends in the mission data. This is a skill that NASA engineers perform in their quest for process and product improvement. Possible tools could be Excel, charts, and tables or graphs.
- Be sure to check for student opportunities, additional educational resources and more at: <u>http://www.nasa.gov/education</u>

